Refine your search:     
Report No.
 - 

A Study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

Sato, Haruo

This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. This consists of 7 chapters. Chapter 1 is the introduction, in which conventional studies on nuclide migration in buffer materials and rocks for the geological disposal of radioactive waste carried out to date are reviewed, and those problems are summarized as well as the objectives of this study are described. Besides, the difinition of geological disposal is explained. In Chapter 2, it is described on non-steady state diffusion of HTO, Sr-90, Tc-99, I-129, Cs-137, Np-237, Am-241 and Pu in purified sodium bentonite, Kunipia-F, in which the rate of constituent Na-smectite was raised approximately 100wt%. In-diffusion experiments were carried out in a range of bentonite densities of 200 $$sim$$ 2000 kg$$cdot$$m$$^{-3}$$ under ambient aerobic conditions at room temperature (20 $$sim$$ 23$$^{circ}$$C), and apparent diffusion coefficients (Da) were obtained. The apparent diffusion coefficients decreased with increasing dry density of bentonite. It was quantitatively indicated from diffusion experiments using HTO that these Da values include the effect of geometric retardation such as the tortuosity factor of compacted bentonite. It was experimentally clarified that Da is not affected by diffusion time based on diffusion experiments for different experimental periods using Sr and Cs. Moreover, it was also experimentally clarified that Da is not affected by tracer ...

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.