Refine your search�ソスF     
Report No.
 - 

Modelling of the interaction of bentonite with hyperalkaline fluids

Muroi, Masayuki*

Hyperalkaline pore water of cementitious material used in TRU waste repository would react with bentonite and cause the increased porosity and the loss of the swelling and sorption ability. This work is a modelling study on bentonite-cement pore water. The possible extent of reaction between bentonite and cement pore water was simulated using the PRECIP reaction-transport code. Three cement pore fluid compositions (leachates 1,2 and 3) were reacted with a 1-D, 1m flowpath of bentonite (+ sand) at 25 and 70$$^{circ}$$C. Key minerals were allowed to dissolve and precipitate using kinetic reaction mechanism. Leachate 1 was the most aggressive fluid (highest pH, Na and K), and leachate 3 (1owest pH, Na and Ca) the least aggressive. Simulation with leachate 1 showed total removal of primary bentonite minerals up to 60 cm from the contact with cement after $$sim$$1000 years. The maximum porosity increase observed was in leachate 1(up to 80-90%) over a narrow zone 1-2 cm. Simulations with all fluids showed total filling of pore with CSH minerals in a zone very close to the interface with the cement, whereas zeolites and sheet silicates formed far away. For a given leachate composition, there was little difference in the profiles at the two temperatures studied. It was suggested that bentonite alteration was not sensitive to the kinetic parameters over the conditions studied. The conceptual model chosen for the modelling study assumed that there was an unlimited amount of cement pore fluid available for reaction with bentonite so that the results of the simulations represent a conservative (pessimistic) estimate. There were a number of uncertainties associated with the modelling which relate to assumptions concerning: the kinetic mechanisms for dissolution and growth of minerals at elevated pH; evolving surface areas of minerals with time; thermodynamic data for CSH minerals, zeolites and aqueous species at high pH; the synergy between changing porosity and fluid ...

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.