Refine your search:     
Report No.

Raman spectroscopic measurements of porewater in bentonite

not registered; not registered; not registered

Nature of porewater in bentonite plays important roles on the mass transport in the compacted bentonite used as a physical and chemical buffer material of the multi-barrier system in the high level radioactive waste manegement Higher activation energies of diffusion in the compacted bentonite than those in the aqueous solution is due probably to change in molecular structure of water in the porewater. The Raman spectroscopy was applied to studying the structure of porewater in bentonite at room temperature. Bentonite (Kunipia F, 98-99wt% of Na-smectite) was mixed with ion-exchanged water by water content of 75, 80, 90, 95 and 98wt% of water or with 0.5M NaCl aqueous solution by 75 and 80wt% of NaCl solution. Intensity maxima of the spectra of ion exchanged water, NaCl solution and their porewater were observed near 3200 to 3250, 3400, 3630cm$$^{-1}$$. These bands can be attributed to water molecules forming stronger hydrogen bond in this manner. Ratio of intensity, 3250cm$$^{-1}$$/3400cm$$^{-1}$$, increased from 0.97 to 1.1 with a decrease in water content of 100wt% (water) to 75wt%. On the other hand, intensity ratio of 3400cm$$^{-1}$$/3250cm$$^{-1}$$ of NaCl aqueous solution, 80wt%and 75wt% were 0.92, 1.2 and 1.3, respectively. Since the Raman scattering near 3250cm$$^{-1}$$ was attributed to water molecule forming the strongest hydrogen bonding in the three bands, those changes in intensity ratio suggests an increase in number of water molecule forming strong hydrogen bond in porewater of the bentonite. The constrained porewater possibly results in the high activation energy of diffusion in the compacted bentonite.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.