Refine your search�ソスF     
Report No.
 - 

The Activity of sulfate reducing bacteria in bentonite and the effect of hydrogen sulfide on the corrosion of candidate materials for overpacks

Taniguchi, Naoki ; Kawasaki, Manabu*; Fujiwara, Kazuo*

The corrosion of metallic materials used in natural environment are sometimes affected by microbial action. It is apprehended that microorganism living in deep underground or brought from ground surface during excavation makes an impact on overpack material for geological disposal of high-level radioactive waste. Sulfate reducing bacteria (SRB) is known to be one of the most representative microorganism which affects the corrosion of metals. In this study, the behavior of growth of SRB was investigated at first under the presence of bentonite as a main component of buffer material which encloses the overpack. The results of the tests showed that the population of SRB after the culture in synthetic sea water mixed with bentonite decreased with increasing the ratio of bentonite/solution. SRB was hardly grown in medium whose bentonite/solution ratio exceeded 1000g/l. As a conservative case, the effects of sulfide on the corrosion of overpack materials were also studied assuming high activity of SRB. Carbon steel, copper and titanium specimens were immersed in synthetic sea water purging 0.1MPa H$$_{2}$$S gas and the corrosion behavior was compared with the results in N$$_{2}$$ gas purging environment. Obvious effect of sulfide on the corrosion of carbon steel was not observed, but the corrosion rates of copper specimens were accelerated several hundred times by purging H$$_{2}$$S gas. The absorption of hydrogen into titanium specimens was not affected by purging H$$_{2}$$S gas, but the difference of hydrogen absorption between pure titanium and titanium alloy containing 0.06%-Pd was observed.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.