Refine your search:     
Report No.
 - 

Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel; Corrosion research under chlorine gas condition.

not registered ; Kato, Toshihiro*; Hanada, Keiji; not registered; Aose, Shinichi

Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl$$_{2}$$-O$$_{2}$$ bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.