Refine your search:     
Report No.
 - 

Research on simulation against the DECOVALEX project; Document prepared by other institute, based on the contract

Chijimatsu, Masakazu*; Amemiya, Kiyoshi*

After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in to the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against Experiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks.

Acecsses

:

- Accesses

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.