Refine your search:     
Report No.

In sodium tests of hard facing materials, 2; Test Result in room temperature argon

Kano, Shigeki; Nakayama, Koichi; Hasegawa, Naruo; Koakutsu, Toru; Nakasuji, Takashi; Namekawa, Masaru; Atsumo, Hideo

A series of experiments have been carried out to develop and screen friction and wear resistant materials used for sliding components of a sodium cooled reactor. Preceding studies $$^{(1)-(5)}$$ clarified the short-term friction and wear characteristics of various materials in 450$$^{circ}$$C sodium. A present study relates to clarify friction and wear behavior in argon environment, where a part of sliding components are located, and compare test data in room temperature argon with those in 450do sodium. The results obtained are as follows: (1)Static friction coefficients ($$mu$$s) in argon were almost lower than 0.2. They were apt to be lower than those in sodium. (2)Kinetic friction coefficients ($$mu$$k) in argon varied with load. The difference of $$mu$$k in argon and sodium depended on material combination. (3)Wear rates were remarkably high in argon. Wear rates of Colmonoy and Stellite were not detected in sodium, but were detected in argon. (4)Sliding surface was more roughened in argon, and hardness of sliding surface was almost lower in argon than in sodium. (5)There is the significant difference between friction and wear characteristics argon and those in sodium. Then, it is difficult that in-sodium behavior is estimated with in-argon data. (6)The above-mentioned difference in room temperature argon and 450$$^{circ}$$C sodium will be greater when the test is carried out in higher temperature argon.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.