検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

高温高速炉を用いた水素製造法に関する検討(II); 固体電解質高温水蒸気電気分解

Study on hydrogen production methods using high temperature fast reactor

大坪 章; 羽賀 一男

not registered; Haga, Kazuo

〔目的〕来世紀にクリーンエネルギー源としての実用化が期待されている水素を、高温高速炉を熱源として製造する方法を検討する。〔方法〕高温高速炉の熱及び、夜間余剰電力を使用して、水を効率良く電気分解するための固体電解質高温水蒸気電解法の解析検討を行う。〔結果〕高温高速炉の炉容器出口冷却材温度を700度C及び880度Cとして、システムの検討を行ったところ電解効率はおのおの91.6%及び92.2%となる。ここでこの場合の電解効率は、次式で表される。製造された水素の燃焼時の発熱量電解効率=高温高速炉よりの熱量+電気分解用電気量このシステムは原理的には炉容器出口冷却材温度を550度Cでも設計可能であるが、システム中に約900度Cの水蒸気及び空気の熱交換器を必要とするため、難点がある。

[Objective] To study hydrogen production methods using a high temperature fast reactor as its heat source. The hydrogen is expected to be clean energy source in the next century. [Method] Study was performed on a high temperature steam electrolysis method using a solid electrolyte, which is a hydrogen production method studied elsewhere. [Results] Assuming that hydrogen production system study was operated at 700 and 880$$^{circ}$$C of reactor vessel outlet coolant temperature of the HTFR, electrolysis efficiencies were determined to be 91.6 and 92.2 %, respectively. In this case, the electrolysis efficiency is shown as the following equation. Blectrolysis efficiency = (Heat generated by combution of produced hydrogen)/(Heat from HTFR + Electric power used for electrolysis) The system can also be operated at 550$$^{circ}$$C with an additional heating system up to 900$$^{circ}$$C. However technical feasibility of the heat exchangers used in the hydrogen production system is not clear.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.