Refine your search:     
Report No.
 - 

Development of creep-fatigue evaluation method for welde structures considering metallurgical and geometrical discontinuities; Application of elastic follow-up model to welded joints

kasahara, Naoto

In order to evaluate thermal transient strength of welded components in nuclear plants, conventional structural design codes provide conservative strength reduction factors, which are desired to be rationalized. Author extended the generalized clastic follow-up model to evaluate main causes of strength reduction of welded joints. As main causes of strength reduction of welded joints subjected to cyclic thermal transients, attention was given to (1)Metallurgical discontinuity in which the different deformation response between base metal and weld metal can result in nonuniform stresses and strain across the weldment, (2)Structural discontinuity at penetration beads of welded joints, and (3)Degradation of Weld Metal. In order to evaluate (1) and (2) of above factors, an elastic follow-up model was successfully applied. Thermal transient strength test results provide further substantiation of the validity of the elastic follow-up model for ensuring adequate life in elevated temperature component weldments. Author applied the creep-fatigue life prediction methods based on the elastic follow-up model to evaluate test results of a welded vessel model. Proposed method was proved to be adequate through comparison of predicted damagc with observed cracks data.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.