Refine your search:     
Report No.
 - 

Numerical investigation on thermal striping conditions for a tee junction of LMFBR coolant pipes (II); Investigation for the MONJU EVST tee junction

not registered

Thermal striping phenomena characterized by stationary random temperature fluctuations are observed in the region immediately above the core exit of liquid-metal-cooled fast breeder reactors (LMFBRs) due to the interactions of cold sodium flowing out of a control rod (C/R) assembly and hot sodium flowing out of adjacent fuel assemblies (F/As). Therefore the in-vessel components located in the core outlet region, such as upper core structure (UCS), flow guide tube, C/R upper guide tube, etc., must be protected against the stationary random thermal process which might induce high-cycle fatigue. In this study, thermal striping conditions at the tee junction in the MONJU EVST system (maximum temperature difference : 110 $$^{circ}$$C, Velocity ratio between main and branch pipes : 0.25) were investigated numerically by the use of computer programs. From the investigations, the following results have been obtained: (1) Effects of the secondaly flows generated by the existence of 90$$^{circ}$$ elbow located at upstream position of the tee junction were negligeble, because the flow velocity in the main pipe is 0.25 of the flow velocity in the branch pipe. (2) A ration between maximum and effective amplitudes of the temperature fluctuations calculated by the DINUS-3 code was 3.18. It was concluded that the value 6.0 as the ratio used in the integrity evaluation of the EVST system is a coservative side. (3) There was a limit in ability of a time-averaged multi-dimensional code AQUA, in the evaluation of thermal striping phenomena with recirculation flows. One of the reasons was considered that the local equilibrium of turbulence flows was not established in this tee junction problem.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.