Refine your search:     
Report No.
 - 

Study on sodium coolant loop-type reactor; Parametric study on maximum thermal stress depending on routing dimension of piping system

Tsukimori, Kazuyuki; Furuhashi, Ichiro*

lt is one of the important key points to reduce thermal stress of the primary piping system in the design of sodium coolant loop-type FBR plants. The objectives of this study are to understand the characteristics of the thermal stresses in the simple S-shaped hot leg piping systems which run from the outlet nozzle of the reactor vessel (R/V) to the inlet nozzle of the intermediate heat exchanger (IHX), and to propose some recommendable routings of piping systems. Results are summarized as follows. (1)Generally, the thermal stresses in elbows are severer than those at nozzles. The tendency was observed that the stress in elbow decreases with the increase of the distance between the outlet nozzle of R/V and the inlet nozzle of IHX and also the distance between the outlet nozzle of R/V and the liquid surface level. (2)lt is expected to reduce thermal stresses in elbow to big extent by adopting super 90 degree elbows. Therefore, in these cases the dimension region which satisfies the allowable stress is broad compared with that in the case of the conventional 90 degree elbow. (3)The stress estimations in elbow based on 'MITl notice No.501' become excessively large compared with the results by FEA using shell elements, when the maximum stress occurs at the end of elbow. ln these cases, the estimation can be rationalized by replacing the maximum stress by the mean of stresses at the end and at the middle of the elbow. (4)Two routings with 105 degree elbows are recommended. 0ne has the advantage from the view point of reduction of length of pipe and the other does from the view point of reduction of thermal stresses, compared with the routing with 90 degree elbows.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.