Refine your search�ソスF     
Report No.
 - 

Development of system analysis code for pyrochemical process using molten salt electrorifining

Tozawa, Katsuhiro; not registered; Kakehi, Isao

This report describes accomplishment of development of a cathode processor calculation code to simulate the mass and heat transfer phenomena with the distillation process and development of an analytical model for cooling behavior of the pyrochemical process cell on personal computers. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. The cathode processor calculation code with distillation process was developed. A code validation calculation has been conducted on the basis of the benchmark problem for natural convection in a square cavity. Results by using the present code agreed well for the velocity-temperature fields, the maximum velocity and its location with the benchmark solution published in a paper. The functions have been added to advance the reality in simulation and to increase the efficiency in utilization. The test run has been conducted using the code with the above modification for an axisymmetric enclosed vessel simulating a cathode processor, and the capability of the distillation process simulation with the code has been confirmed. An analytical model for cooling behavior of the pyrochemical process cell was developed. The analytical model was selected by comparing benchmark analysis with detailed analysis on engineering workstation. Flow and temperature distributions were confirmed by the result of steady state analysis. In the result of transient cooling analysis, an initial transient peak of temperature occurred at balanced heat condition in the steady-state analysis. Final gas temperature distribution was dependent on gas circulation flow in transient condition. Then there were different final gas temperature distributions on the basis of the result of steady-state analysis. This phenomenon has a potential for it's own metastable condition. Therefore it was necessary to design gas cooling flow pattern without ...

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.