検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

小型高速炉の炉心・燃料設計研究(その3)

Design Studies on Small Fast Reactor Cores(III)

三田 敏男; 岡野 靖; 高木 直行; 永沼 正行  ; 宇都 成昭  ; 水野 朋保

Sanda, Toshio; Okano, Yasushi; Takaki, Naoyuki; Naganuma, Masayuki; Uto, Nariaki; Mizuno, Tomoyasu

実用化戦略調査研究の一環として小型高速炉の概念を検討しており、フェーズIIでは「長期燃料無交換」と「高い受動的安全特性」の2点を主な着眼点として、高速炉特有の特性を活かした小型高速炉の設計研究を実施している。平成15年度は、これまでの検討結果を踏まえて経済性の観点から有望な165MWe制御棒制御型のナトリウム強制循環冷却炉心を検討対象とした。本研究では、20年間燃料無交換運転と出口温度高温化(550$$^{circ}$$C )を目指し、金属燃料のピン径を太径化(15mm以下)、炉心圧損低減(0.75kg/cm$$^{2}$$程度以下)、自己作動型炉停止機構(SASS)に頼らない受動的安全性を確保できる範囲内で冷却材ボイド反応度制限緩和による炉心径の縮小(3m以下)を設計条件として、冷却材ボイド反応度 6${$}$程度と 8${$}$程度の高温化炉心と高温小径化炉心を検討した。本概念として出力分布変動が少なく高増殖性能のポテンシャルの高いZr含有率3領域単一Pu富化度金属燃料炉心を検討して、20年間燃料無交換運転と出口温度高温化(550$$^{circ}$$C)の達成の見通しを得た。高温化炉心と高温小径化炉心はブランケットを有さない炉心で、その性能は夫々、(1)炉心高さ/等価直径: 293cm/390cmと260cm/334cm、(2)取出平均燃焼度: 77GWd/tと80GWd/t、(3)燃焼反応度: 1.2% $$Delta$$k/kk'と1.1%$$Delta$$k/kk'、(4)増殖比:1.06と1.07であり、両炉心共に制御棒反応度収支、燃料健全性、遮へい性能を満たすことを確認した。また、燃焼による反応度変化が小さいため、制御棒の微調整を要しない長期運転の可能性についても検討した。なお、別途報告予定の安全解析の結果、高温化炉心はATWS時にSASSに頼らないで高温静定する見通しが示されたので、この炉心をフェーズII中間取り纏めの代表炉心に推奨した。更に、本検討のナトリウム冷却小型高速炉を対象として、超臨界圧炭酸ガスタービンによるFeher熱サイクルヘの適用性として熱サイクル4型を検討して、IHX必要伝熱面積が小さくBOP構成が単純な中間型熱サイクルが、単純ブレイトンサイクルで熱効率 33.4%ながら、最も有望であると判断した。

Some concepts of small fast reactors have been studied as part of the "Feasibility Studies on Commercialized Fast Reactor Cycle System (FS)", and the core design study has been performed at two main features of "long-life core " and "enhanced passive safety" in the FS phase II. Based on the previous study, 165MWe forced circulation sodium cooled reactor with control rods was studied as the promising concept from a viewpoint of economical efficiency in JFY 2003. In the present study, the fuel reloading interval of 20 years and outlet temperature of 550 deg-C are targeted under following condition as thicker metal fuel pin diameter (less than or equal) 15mm, lower pressure drop (less than or equal) 0.75kg/cm2, and smller core diameter (less than or equal) 3m by sodium void reactivity restriction relief into design conditions avoiding core melt without SASS at ATWS. The prospect of achievement of the fuel reloading interval of 20 years and outlet temperature of 550 deg-C was acquired for "Higher Temperature Core" and "Higher Temperature and Smller Core" without blanket fuels by using a sodium-cooled metal-fueled core with single Pu enrichment fuel which has high potential of small change of space distribution of power density and high breeding ratio. These cores have core height / diameter of 127/293cm and 164/260cm, fuel burnup of 77 and 80 GWd/t, burnup reactivity of 1.2 and 1.5% (delta)k/kk', breeding ratio of 1.06 and 1.07 and coolanat void reactivity of 6 and 8${$}$, respectively. Control rod reactivity balance, fuel soundness and shielding performance were checked that these were satisfied. Moreover, since the reactivity change due to burnup was small, the possibility of long-term operation which does not require a control rod movement was also examined. In addition, the "Higher Temperature Core" was recommended for a promising core of phase-II middle time since core melt would be avoided without SASS at ATWS. Furthermore, the applicability of the Feher heat cycl

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.