Refine your search:     
Report No.
 - 

Conceptual design of multiple parallel switching controller

Ugolini, D.; Yoshikawa, Shinji ; Ozawa, Kenji

This report discusses the conceptual design and the development of a preliminary model of a multiple parallel switching (MPS) controller. The introduction of several advanced controllers has widened and improved the control capability of nonlinear dynamical systems. However, it is not possible to uniquely define a controller that always outperforms the others, and, in many situations, the controller providing the best control action depends on the operating conditions and on the intrinsic properties and behavior of the controlled dynamical system. The desire to combine the control action of several controllers with the purpose to continuously attain the best control action has motivated the development of the MPS controller. The MPS controller consists of a number of single controllers acting in parallel and of an artificial intelligence (AI) based selecting mechanism. The AI selecting mechanism analyzes the output of each controller and implements the one providing the best control performance. An inherent property of the MPS controller is the possibility to discard unreliable controllers while still being able to perform the control action. To demonstrate the feasibility and the capability of the MPS controller the simulation of the on-line operation control of a fast breeder reactor (FBR) evaporator is presented.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.