Refine your search:     
Report No.
 - 

Creep life assessment of Mod.9Cr-1Mo steel, 1; Quantitative evaluation of microstructural damage in creep rupture specimens

Sawada, Kota; Maruyama, Koichi; Komine, Ryuji; Nagae, Yuji 

Several microstructural changes take place in a material during the course of creep. These changes can be a measure of creep life consumption. In this paper, microstructural changes in Mod.9Cr-1Mo steel were studied in order to examine their ability as the measure of crecp life consumption. Macroscopic structural changes, such as void growth, rotation of lath structure toward the tensile axis and elongation of grains, are evident only in the necked portion of ruptured specimens. These macroscopic structural changes are not useful for creep life assessment. Lath width increases and dislocation density within lath decreases with increasing creep duration. These changes in dislocation substructure start in the early stage of creep life, and cause the increase of strain rate in the tertiary creep stage. The lath width and the dislocation density reach a stationary value before rupture. The stationary values are independent of temperature, and uniquely related to creep stress normalized by shear modulus. The extent of these microstructural changes are greater at lower stresses under which the material is practically used. These facts suggest that the lath width and the dislocation density within lath can be a useful measure of creep life consumption. Hardness of crept specimens is closely related to the lath width and the dislocation density within lath. The changes of these microstructural features can be evaluated by the measurement of handness.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.