Refine your search:     
Report No.

Observation of radiation behavior by using an IR imaging bolometer in the JT-60U tokamak

Parchamy, H.*; Peterson, B. J.*; Konoshima, Shigeru; Ashikawa, Naoko*

Foil bolometers are standard magnetic fusion plasma diagnostics, by which the energy lost from the plasma can be detected through the heating of a thin metal foil. Imaging bolometers have been used in experiments to make time traces of radiation, in neutral beam injection heated discharges. In our case, the radiation is observed by a semi-tangentially viewing IR imaging bolometer in the JT-60U Tokamak, where a graphite-coated gold foil with a thickness of 2.5microns and an effective area of 9cm$$times$$7cm is used. The frame rate of this IR camera is 30Hz. Future calibration of the infrared imaging video bolometer will compensates for nonuniformities in the foil. We also improve the diagnostic by enabling the acquisition of 14bit digital data (compared with 8bit video data in the last campaign) and additional shielding for the IR camera against the magnetic field, neutrons and $$gamma$$ particles. The maximum brightness of the radiation from the plasma core during a disruption has been visible. The distribution of the radiation intensity in two dimensions (2D) could be inferred from the IR camera. These measurements yield a wealth of information on radiation behavior. The figure shows the intensity distribution of the black body radiation from the foil heated by the plasma radiation. Waveforms of the radiated power signal, shown in the bottom box, are processed with 0.1 second low pass filter for comparison with the imaging bolometer. This work was partly supported by Grants-in-Aid for Scientific Research of the JSPS, Nos.16560729/16082207.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.