Refine your search:     
Report No.
 - 

Irradiation effects on precipitation and its impact on the mechanical properties of reduced-activation ferritic/martensitic steels

Tanigawa, Hiroyasu; Sakasegawa, Hideo   ; Hashimoto, Naoyuki*; Klueh, R. L.*; Ando, Masami; Sokolov, M. A.*

It was previously reported that reduced-activation ferritic/martensitic steels (RAFs), such as F82H-IEA and its heat treatment variant, ORNL9Cr-2WVTa, JLF-1 and 2%Ni-doped F82H, showed a variety of changes in ductile-brittle transition temperature (DBTT) and yield stress after irradiation at 573K up to 5dpa. These differences could not be interpreted solely as an effect of irradiation hardening caused by dislocation loop formation. To address these observations, the precipitation behavior of the irradiated steels was examined by weight analysis, X-ray diffraction analysis and chemical analysis on extraction residues. The results suggested that irradiation affects precipitation as if it was forced to reach the thermal equilibrium state at irradiation temperature 573K, which usually never be achieved by aging. The details of precipitates in the irradiated RAFs were examined to determine their impact on the mechanical properties, which obtained by tensile, Charpy impact, and bend bar toughness tests. Transmission electron microscopy was performed on thin films and extraction replica specimens to analyze the size distribution, chemical composition and crystal structure of precipitates. It turned out that the hardening level normalized by square root of average packet size showed a linear dependence on the increase of extracted precipitate weight. This dependence suggests that the difference in irradiation hardening between RAFs was caused by the different precipitation behavior on packet, block and prior austenitic grain boundaries during irradiation. The simple Hall-Petch law could be applicable to interpret this dependence. Detailed analytical results will be presented and their interpretation discussed.

Accesses

:

- Accesses

InCites™

:

Percentile:84.1

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.