Refine your search:     
Report No.
 - 

Suppression of fast electron leakage from large openings in a plasma neutralizer for N-NB systems

Kashiwagi, Mieko; Hanada, Masaya; Yamana, Takashi*; Inoue, Takashi; Imai, Tsuyoshi*; Taniguchi, Masaki; Watanabe, Kazuhiro

Plasma neutralizer is one of key components to achieve the required system efficiency ($$>$$ 50 %) for a negative-ion based neutral beam (N-NB) system in a fusion power plant. In the plasma neutralizer, highly ionized plasma is required at lower pressure, e.g., ionization degrees of $$>$$ 30 % at $$<$$ 0.08 Pa for 1 MeV negative ions. In such low pressure, mean free path of fast electron that contributes to ionizations becomes longer than the neutralizer's dimensions. Therefore, suppression of fast electron leakage from large openings that are beam entrance and exit is a crucial issue to realize plasma neutralizers. To suppress the fast electron leakage from the openings, authors propose a shield field, which is a weak transverse magnetic field of only 30 Gauss applied locally around the opening. The shield field are numerically examined and designed by using a three dimensional particle orbit code. In the experimental studies, this weak shield field is applied at the openings (diam. = 20 cm) of an arc discharge driven plasma neutralizer (length = 200 cm, diam. = 60 cm). The plasma parameters inside and outside of the opening were measured by a Langmuir probe. The electron energy distribution function (EEDF) showed that considerable fast electrons, which were leaked from the opening, were suppressed successfully by the weak shield field of 30 Gauss. Thus the leaking fast electrons were repelled into the neutralizer to deposit their energy for the plasma production. At a result, the plasma production efficiency (plasma density / arc power) was improved by a factor of 1.5 at $$<$$ 0.08 Pa.

Accesses

:

- Accesses

InCites™

:

Percentile:32.55

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.