Refine your search�ソスF     
Report No.
 - 

Generation of amorphous $$rm SiO_2/SiC$$ interface by the first-principles molecular dynamics simulation

Miyashita, Atsumi; Onuma, Toshiharu*; Yoshikawa, Masahito; Iwasawa, Misako*; Nakamura, Tomonori*; Tsuchida, Hidekazu*

Silicon carbide (SiC) semiconductor devices are expected to be used under severe environments such as outer space and/or nuclear power plants. However, at this time, SiC devices don't present the predictable performance, since defects at $$rm SiO_2/SiC$$ interface reduce electric characteristics of them. The relation among atomic structures, interfacial defects and electric characteristics is not clear. Therefore, we tried to solve these problems by the computer simulation. The SiO$$_{2}$$/SiC interface structure is generated and the electronic geometry is decided by the first-principle molecular dynamics (MD) simulation with the Earth-Simulator. The amorphous $$rm SiO_2/SiC$$ interface structure is made by heating and rapid quench calculation using 444 atoms model. The heating temperature is 4000K, the heating time is 3.0ps, and the speed of rapid quench is $$rm -1000K/ps$$. After a rapid quench, the atomic structure became an almost perfect interfacial structure. However, a few defect energy levels were still observed in the band gap. The defect energy levels are originated from the localized electronic distribution of the interfacial oxygen.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.