Refine your search:     
Report No.

Deuterium depth profiling in JT-60U tiles using the D($$^{3}$$He, p)$$^{4}$$He resonant nuclear reaction

Hayashi, Takao; Sugiyama, Kazuyoshi*; Krieger, K.*; Mayer, M.*; Alimov, V. Kh.*; Tanabe, Tetsuo*; Masaki, Kei; Miya, Naoyuki

The absolute concentrations and the depth profiles of deuterium in plasma-facing graphite tiles used in JT-60U were determined by means of the D($$^{3}$$He, p)$$^{4}$$He resonant nuclear reaction. The highest deuterium concentration was found at a plasma-facing surface near the outer pumping slot on the outer dome wing tile, where redeposited layers with thicknesses in the micron or submicron range were observed, indicating deuterium codepostion with carbon. In addition, a high flux of high energy deuterium originating from NBI is expected on the outer dome wing as well as on the dome top tile, and could have some contribution to this area of highest deuterium retention. The deuterium content integrated up to about 16 $$mu$$m was $$approx$$2.5$$times$$10$$^{22}$$ D/m$$^{2}$$. The depth profile has a broad peak in the atomic ratio of D/C$$approx$$0.05 at a depth of about 2.5 $$mu$$m. This is mainly because D retained in the top surface was replaced by H due to isotope exchange during H discharges, which were carried out to remove tritium from the plasma-facing wall before air ventilation. In erosion dominated areas such as the outer divertor tiles, the amount of deuterium was one order of magnitude lower than that on the outer dome wing tile. In the first wall area, the highest amount of deuterium with a content of $$approx$$1.0$$times$$10$$^{22}$$ D/m$$^{2}$$ was found in the upper region, nearest to the plasma. Again implantation of high energy deuterium due to NBI could have some contribution to the high deuterium retention.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.