Refine your search:     
Report No.
 - 

Establishment of freezing model for reactor safety analysis

Kamiyama, Kenji  ; Brear, D. J.*; Tobita, Yoshiharu; Kondo, Satoru

A mechanistic simulation of molten core-material relocation is required to reasonably assess consequences of postulated core disruptive accidents (CDAs) in fast reactors (FRs). The dynamics of molten core-material freezing when it is driven into the channels surrounding the core region plays an important role since this affects fuel removal from the core region. Therefore, a mechanistic model for freezing behavior was developed and introduced into the FR safety analysis code, SIMMER-III, in this study. Based on the micro-physics of crystallization, two key assumptions, supercooling of melt in the vicinity of the wall and melt-wall contact resistance due to imperfect contact, were introduced. As a result, encouraging agreement both with measured melt-penetration lengths and freezing modes of UO$$_{2}$$ and metals was obtained. Furthermore, in order to reinforce the developed model, a semi-empirical correlation to predict the supercooling temperature was found. The developed model with the new correlation reproduced both stainless steel freezing and alumina freezing.

Accesses

:

- Accesses

InCites™

:

Percentile:83

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.