Refine your search:     
Report No.
 - 

Effects of tungsten on microstructure and high-temperature strength of oxide dispersion strengthened (ODS) martensitic steel

Narita, Takeshi*; Ukai, Shigeharu  ; Kaito, Takeji ; Otsuka, Satoshi   ; Fujiwara, Masayuki

In 9Cr ODS martensitic steel, tungsten(W) is a solid solution strengthening element, whose addition increases high-temperature strength by the combined effect with oxide dispersion strengthening. However, its excessive addition results in the increase of ferrite phase causing precipitation of intermetallic compound (Laves phase) under high temperature irradiation condition and thus ductility degradation. The amount of W addition therefore should be as low as possible. In this report, the effects of W on microstructure and high temperature mechanical properties of 9Cr ODS martensitic steels were examined for obtaining insights into optimum W concentration in terms of high-temperature strength and ductility. The results obtained are as follows: (1)In the 9CrODS martensitic steel, addition of W exceeding 2mass% is shown to cause precipitation of Laves phase which degrades the ductility and fracture toughness. It can be said that the current specification of W concentration, i.e. 2mass%W, is appropriate. (2)Hardness and tensile strength is shown to increase with W concentration. This increase is caused by the increase of solid solution strengthening and residual-alpha ferrite. The retainment of residual-alpha ferrite is enhanced by the addition of W (ferrite former element). The improvement of tensile strength at 973K provided by the solid solution strengthening is shown to be equivalent to that provided by the retainment of residual-alpha ferrite. (3)It would be open task to explorer an improved alloy design concept, i.e. decrease of W as low as possible and increase of residual-alpha ferrite. The degradation of high-temperature strength by decreasing W addition can be made up by the increasing fraction of residual-alpha phase that is provided by reduction of austenite former elements and increasing addition of ferrite former elements.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.