Refine your search:     
Report No.
 - 

Yield point of metallic glass

Shimizu, Futoshi ; Ogata, Shigenobu*; Li, J.*

Shear bands form in most bulk metallic glasses (BMGs) within a narrowrange of uniaxial strain $$epsilon_{rm y} simeq 2%$$. We proposethis critical condition corresponds to embryonic shear band (ESB)propagation, not its nucleation. To propagate an embryonic shearband, the far-field shear stress $$tau_inftyapprox Eepsilon_{rm y}/2$$must exceed the quasi steady-state glue traction $$tau_{rm glue}$$of shear-alienated glass until the glass-transition temperature $$T_{rm g}$$ is approached internally due to frictional heating, atwhich point ESB matures as a runaway shear crack. The incubationlengthscale $$l_{rm inc}$$ necessary for this maturation is estimatedto be $$sim 10^2$$ nm for Zr-based BMGs, below which size sample-scaleshear localization does not happen. In shear-alienated glass, the lastresistance against localized shearing comes from extremely fastdownhill dissipative dynamics (DDD) of timescale comparable to atomicvibrations, allowing molecular dynamics (MD) simulations to capturethis recovery process which governs $$tau_{rm glue}$$. We model4 metallic glasses: a binary Lennard-Jones system, two binaryembedded-atom (EAM) potential systems, and a quinternary EAMsystem. Despite vast differences in the structure and interatomicinteractions, the four MD calculations give $$epsilon_{rm y}$$predictions of $$2.4%, 2.1%, 2.6%$$ and $$2.9%,$$ respectively.

Accesses

:

- Accesses

InCites™

:

Percentile:99.18

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.