Refine your search�ソスF     
Report No.
 - 

Effect of hyperthermal atomic oxygen exposures on hydrogenated diamond-like carbon films

Yokota, Kumiko*; Asada, Hidetoshi*; Tagawa, Masahito*; Ohara, Hisanori*; Nakahigashi, Takahiro*; Yoshigoe, Akitaka ; Teraoka, Yuden; Martin, J. M.*; Belin, M.*

Hydrogenated diamond-like carbon (DLC) is expected as a lubricant for space uses because of its ultra low friction charactor in vacuum. Thus, DLC films were exposed to atomic oxygens which were generated by a laser detonation method simulating a low orbit space environment. The DLC surfaces were analysed and the results are reported in this talk. The hydrogenated amorphous DLC was fabricated by a RF-CVD method on Si substrates. Relative collision energy of space planes against atomic oxygens can be simulated with the space environment experimental apparatus. The DLC films exposed to atomic oxygens were analysed by an SR-PES method etc. The SR-PES was performed at the surface chemical reaction analysis station installed in the BL23SU of SPring-8. It was suggested that some volatile oxides were formed and desorbed from the DLC surface when DLC surface was irradiated by atomic oxygens with an incident energy of 4.2 eV and fluence of 5$$times$$10$$^{18}$$atoms/cm$$^{2}$$.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.