Refine your search:     
Report No.
 - 

Influence of Ti on inclusion formation of reduced activation ferritic/martensitic steels

Sawahata, Atsushi; Tanigawa, Hiroyasu; Shiba, Kiyoyuki; Enomoto, Masato*

Reduced activation ferritic/martensitic steels (RAFs), such as F82H (Fe-8Cr-2W-0.2V-0.04Ta-0.1C), are one of the leading candidates for structural materials of fusion reactors, and it is essential for RAFs R&D to assure its good toughness property for fusion application. In this study, the influence of Ti on impact property was studied based on microstructural analyses and charpy impact tests which were performed against general-purity F82H (0.004Ti-0.0060N) and high-purity F82H ($$<$$0.001Ti- 0.0014N). In general-purity F82H, its impact property around DBTT showed both 100% brittle fracture and brittle-ductile, and this tendency is not appeared in high-purity F82H. SEM observation on those brittle fracture surfaces of general-purity F82H revealed the presence of Al$$_{2}$$O$$_{3}$$-Ta(V,Ti)O complex oxides at the fracture initiation point. The size distribution analyses of oxides suggest that the complex oxide in general-purity F82H showed a higher number density than in high-purity F82H. In addition to this, EDS analyses showed the complex oxides in general-purity F82H had a strong peak of Ti, but they were not detected in the oxide in high-purity F82H. These results suggest the influence of Ti on complex oxide formation which affects impact property.

Accesses

:

- Accesses

InCites™

:

Percentile:13.09

Category:Metallurgy & Metallurgical Engineering

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.