Refine your search:     
Report No.
 - 

Loop formation by ion irradiation in yttria stabilized zirconia

Hojo, Tomohiro*; Yamamoto, Hiroyuki; Aihara, Jun ; Furuno, Shigemi*; Sawa, Kazuhiro; Sakuma, Takashi*; Hojo, Kiichi

Yttria stabilized zirconia (YSZ) is a candidate material focused as optical and insulating materials in nuclear reactors. Therefore, it is useful to investigate defect formation during irradiation, in order to assess YSZ resistance to radiation damage. In the present study, in situ transmission electron microscopy (TEM) observations were performed on YSZ during 30 keV Ne$$^{+}$$ irradiation in the temperature range of 723-1123 K. For irradiations below 1023 K, defect clusters and bubbles were formed simultaneously. On the other hand, at 1123 K, only bubbles were formed in the initial stage of irradiation. Loops formed later following the bubble formation. It was also observed that, in the early stage of irradiation above 923 K, larger bubbles were formed along the loop planes compared with other areas. TEM observations indicated that dislocation loops formed on three kinds of crystallographic planes: namely, (100), (111) and (112) planes.

Accesses

:

- Accesses

InCites™

:

Percentile:43.85

Category:Instruments & Instrumentation

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.