Refine your search�ソスF     
Report No.
 - 

Dynamical simulation of SiO$$_{2}$$/4H-SiC(0001) interface oxidation process; From first-principles

Onuma, Toshiharu*; Miyashita, Atsumi; Iwasawa, Misako*; Yoshikawa, Masahito; Tsuchida, Hidekazu*

We performed the dynamical simulation of the SiO$$_{2}$$/4H-SiC(0001) interface oxidation process using first-principles molecular dynamics based on plane waves and the slab model supercells method. The heat-and-cool method is used to prepare the initial interface structure. In this structure, there is no transition oxide layer or dangling bond at the SiO$$_{2}$$/SiC interface. As the trigger of the oxidation process, the carbon vacancy is introduced in the SiC layer near the interface. The oxygen molecules are added one by one to the empty sphere in the SiO$$_{2}$$ layer near the interface in the oxidation process simulation. The molecular dynamics simulation is carried out at 2500 K. The oxygen molecule is dissociated and forms bonds with the Si atom in the SiO$$_{2}$$ layer. The atoms of Si in the SiC layer at the SiO$$_{2}$$/4H-SiC(0001) interface are oxidized. Carbon clusters are formed in the interface layer. Oxygen molecules react with the carbon clusters and formed CO molecules.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.