Refine your search�ソスF     
Report No.
 - 

Effect of Ta rich inclusions and microstructure change during precracking on bimodal fracture of reduced-activation ferritic/martensitic steels observed in transition range

Tanigawa, Hiroyasu; Sokolov, M. A.*; Sawahata, Atsushi*; Hashimoto, Naoyuki*; Ando, Masami; Shiba, Kiyoyuki; Enomoto, Masato*; Klueh, R. L.*

The master curve (MC) method works when the transition fracture toughness values follow the MC, and once the value is scaled properly, the MC is usually independent of the type of steel or the type of test specimen. This method is very much depending on the assumption that the fracture initiation points are homogeneously distributed and its initiation mechanism is independent on test temperature. The reduced-activation ferritic/martensitic steels (RAFs), such as F82H (Fe-8Cr-2W-0.2V-0.04Ta), has Al$$_{2}$$O$$_{3}$$ Ta(V,Ti)O composite inclusions, or simple Ta(V)O inclusions, and shows inhomogeneous distribution, and it was revealed that that RAFs which contain Ta could initiate the facture in the different mechanism at lower temperature as the composite inclusions become fragile, and this should be considered when the toughness measured with small size toughness specimen which is usually tested at lower temperature.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.