Refine your search�ソスF     
Report No.
 - 

Current status of IBARAKI biological diffractometer in J-PARC; Design of the neutron optics

Ohara, Takashi   ; Kurihara, Kazuo; Kusaka, Katsuhiro; Hosoya, Takaaki; Tanaka, Ichiro*; Niimura, Nobuo*; Ozeki, Tomoji*; Aizawa, Kazuya  ; Morii, Yukio; Arai, Masatoshi; Hayashi, Makoto*; Ebata, Kazuhiro*; Takano, Yoshiki*

Ibaraki Prefectural Government in Japan has started to construct a TOF single crystal neutron diffractometer for biological macromolecules for industrial use at J-PARC. For this diffractometer, design of an efficient neutron transportation system is important because this diffractometer has 40m source-sample distance. Recently, we designed a supermirror neutron guide which can transport 0.7-3.8 Angstrom neutron efficiently. The total length of the mirror section is 25m. At the first 17m, the mirror has curvature (R=4300m) for horizontal direction in order to remove high-energy neutron and $$gamma$$ ray. Simultaneously, all of the mirror section has tapered angle for vertical direction in order to reduce the frequency of neutron reflection at the surface of the supermirror. The neutron flux and profile at the sample position was calculated by Monte Carlo simulation softwares, McStas and IDEAS and compared with a curved, non-tapered guide we had designed previously. In result, the new supermirror system has 2 times gain for 0.7 Angstrom neutron and 1.5 times for 1.5 Angstrom neutron, and the beam profile at the sample position has a rectangular shape.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.