Refine your search:     
Report No.
 - 

Laser-driven proton acceleration from a near-critical density target

Yogo, Akifumi; Daido, Hiroyuki; Bulanov, S. V.; Esirkepov, T. Z.; Nemoto, Koshichi*; Oishi, Yuji*; Nayuki, Takuya*; Fujii, Takashi*; Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; Ma, J.-L.; Mori, Michiaki; Nishiuchi, Mamiko; Pirozhkov, A. S.; Nakamura, Shu*; Noda, Akira*; Nagatomo, Hideo*

In this work, we present a new method to enhance the proton generation by a 10$$^5$$-contrast laser. High-energy protons up to 3.8 MeV are observed with 7.5-$$mu$$m-thick insulator (Polyimide) target irradiated by a laser pulse having energy of 0.8 J and an intensity of 10$$^{19}$$-W/cm$$^2$$. Using two time-of-flight (TOF) spectrometers simultaneously in different directions, we measure the direction dependency of proton-energy spectra. As a result, we find that high-energy component of proton beam is shifted away from the target normal toward the laser-propagation direction, when the laser is focused with 45$$^{circ}$$ incident angle. The TOF measurements over 130 laser shots confirm that the generation of the high-energy protons, which are steered away from the target normal, depends strongly on the laser-focusing condition.

Accesses

:

- Accesses

InCites™

:

Percentile:55.21

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.