Refine your search�ソスF     
Report No.
 - 

Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER

Loarte, A.*; Saibene, G.*; Sartori, R.*; Campbell, D.*; Becoulet, M.*; Horton, L.*; Eich, T.*; Herrmann, A.*; Matthews, G.*; Asakura, Nobuyuki; Chankin, A.*; Leonard, A.*; Porter, G.*; Federici, G.*; Janeschitz, G.*; Shimada, Michiya; Sugihara, Masayoshi

Analysis of Type I ELMs from ongoing experiments shows that ELM energy losses are correlated with the density and temperature of the pedestal plasma before the ELM crash. The Type I ELM plasma energy loss normalized to the pedestal energy is found to correlate across experiments with the collisionality of the pedestal plasma. Other parameters affect the ELM size such as the edge magnetic shear, etc, which influence the plasma volume affected by the ELMs. ELM particle losses are influenced by this ELM affected volume and are weakly dependent on other pedestal plasma parameters. In JET and DIII-D, minimum Type I ELMs with energy losses acceptable for ITER were found, that do not affect the plasma temperature. The duration of the divertor ELM power pulse is correlated with the typical ion transport time from the pedestal to the divertor target and not with the duration of the ELM associated MHD activity. Extrapolation of the present experimental results to ITER is summarized.

Accesses

:

- Accesses

InCites™

:

Percentile:99.72

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.