Refine your search:     
Report No.
 - 

Ultrathin oxide formation process on Si(110)-16$$times$$2 surface and its interface structure

Yamamoto, Yoshihisa*; Togashi, Hideaki*; Kato, Atsushi*; Suemitsu, Maki*; Narita, Yuzuru*; Teraoka, Yuden; Yoshigoe, Akitaka 

We have investigated oxidation at Si(110) surfaces via real-time photoemission spectroscopy with synchrotron radiation. We have already obtained the following information that rapid initial oxidation region was in the early stage of oxidation and one of shifted Si2p core level components was decreased with increasing oxide. Therefore, we focused our interest to the topmost ultrathin oxide-layer formation and investigated time evolution of oxide components of Si2p photoemission spectrum. All experiments were conducted at surface chemistry station of BL23SU in the SPring-8. The oxygen pressure was 1.0$$times$$10$$^{-5}$$Pa and substrate temperature was 813 K. Consequently, concerning oxide components of Si2p during oxidation, the intensity of Si$$^{3+}$$ component was larger than that of Si$$^{4+}$$ until 1 ML oxidation.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.