Refine your search:     
Report No.
 - 

The Phase state at high temperatures in the MOX-SiO$$_{2}$$ system

Nakamichi, Shinya ; Kato, Masato  ; Sunaoshi, Takeo*; Uchida, Teppei; Morimoto, Kyoichi ; Kashimura, Motoaki; Kihara, Yoshiyuki

Japan Atomic Energy Agency researchers have developed mixed oxide (MOX) fuels containing minor actinides (MA). These fuels were irradiated for ten minutes in the FBR Joyo in some short-term irradiation tests. The Si-condensed phases were observed at the center of the pellets in the post irradiation examination. Si impurities came to be mixed into the raw materials in the ball milling process, because Si rubber was used as the lining of the milling pot. Content of Si in the pellets was within the specification of the fuel. It is important to investigate the Si state in MOX at high temperatures like the reactor operating temperature of the fuel to evaluate irradiation behavior. In the present work, MOX specimens with mixed SiO$$_{2}$$ impurity were prepared. The ratio of MOX to SiO$$_{2}$$ was controlled at a mol fraction of 3 to 1. The specimens were first heated at 1973K in atmospheres of three different oxygen partial pressures to adjust the O/M ratio. Then these specimens were sealed in a tungsten capsule, and heated at 2273K or 2673K. Compounds consisting of Pu and Si were observed at grain boundaries of the MOX matrix in specimens after heat treatment. These compounds were not observed in grain interior and MOX matrix was not affected significantly by Si impurity. These compounds tended to form in specimens with low O/M ratio and in specimens heated at higher temperatures.

Accesses

:

- Accesses

InCites™

:

Percentile:19.23

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.