Refine your search:     
Report No.
 - 

Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

Li, M.*; Nagashio, Kosuke*; Ishikawa, Takehiko*; Mizuno, Akitoshi*; Adachi, Masayoshi*; Watanabe, Masahito*; Yoda, Shinichi*; Kuribayashi, Kazuhiko*; Katayama, Yoshinori

Co-61.8 at.% Si (CoSe-CoSi$$_{2}$$) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi$$_{2}$$ compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase.

Accesses

:

- Accesses

InCites™

:

Percentile:71.73

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.