Refine your search:     
Report No.
 - 

The Experimental results of a $$gamma$$-ray imaging with a Si/CdTe semiconductor Compton camera

Takeda, Shinichiro*; Aono, Hiroyuki*; Ishikawa, Shinnosuke*; Odaka, Hirokazu*; Watanabe, Shin*; Kokubun, Motohide*; Takahashi, Tadayuki*; Okuyama, Sho*; Nakazawa, Kazuhiro*; Tajima, Hiroyasu*; Kawachi, Naoki

A $$gamma$$-ray imaging detector is required in various fields such as high-energy astrophysics, medical imaging and nondestructive inspection. We have proposed a concept of the Si/CdTe semiconductor Compton camera, which consists of many layers of thin Si and CdTe detectors. The Si/CdTe Compton camera features high energy resolution and high angular resolution. Recently, we developed a new Compton camera system for a balloon borne astrophysical experiment. It consists of a 4-layers stack of double-sided silicon strip detector (DSSD) modules and 32 CdTe pad detectors symmetrically surrounding the DSSD stack. The Compton reconstruction was successfully performed and the $$gamma$$-ray images were obtained from 662 keV down to 59.5 keV. The Angular Resolution Measure (ARM) is 3.5 degree (FWHM) and 2.5 degree (FWHM) at 356 keV and 511 keV, respectively. The Si/CdTe Compton camera which has such good angular resolution is also attractive for medical imaging and/or nondestructive inspection. An internal structure of about one mm can be resolved when the distance between the camera and a target becomes closer than a few mm. We developed another prototype which enable us to approach the target down to 20 mm. In this presentation, we will show the experimental results of this prototype and also discuss Compton reconstruction methods.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.