Refine your search:     
Report No.
 - 

Study on thermal striping phenomena in triple-parallel jet; Transfer characteristics of temperature fluctuation in sodium and water based on conjugated numerical simulation

Kimura, Nobuyuki; Kamide, Hideki; Emonot, P.*; Nagasawa, Kazuyoshi*

A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing between hot and cold fluids causes thermal fatigue in structural components, is of importance for reactor safety. It is necessary for the quantitative evaluation to investigate occurrence and propagate processes of temperature fluctuation, e.g., decay of temperature fluctuation near structures and transfer of temperature fluctuation from fluid to structures. In Japan Atomic Energy Agency, an innovative sodium cooled fast reactor has been designed. The transfer characteristics of temperature fluctuation from fluid to structure in sodium are quite different from that in water. In order to realize the sodium cooled fast reactor, the clarification of the transfer characteristics of temperature fluctuation is of importance for the rational design against the thermal striping phenomena. In this study, sodium and water experiments of parallel triple jets configuration were performed. For these experiments, numerical simulations were carried out to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. The analysis code, called Trio_U, used in the study has been developed at the CEA in France. The large eddy simulation model is incorporated in the code. Furthermore, the code can calculate fluid and structural domains simultaneously. In the simulations, the calculated time-averaged temperature distributions in fluid and structure were close to the experimental results in sodium and water. The power spectrum densities of temperature fluctuation in fluid and structure were also in good agreements between the experiments and calculations. Furthermore the calculated decay characteristics of temperature fluctuation from fluid to structure were in good agreements with the experimental results.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.