Refine your search:     
Report No.
 - 

Structure, composition and properties of lithium ceramic Li$$_{2}$$TiO$$_{3}$$+5% mole TiO$$_{2}$$ irradiated in WWR-K reactor for solid ceramic blanket of fusion reactor

Tazhibayeva, I. L.*; Kulsartov, T.*; Kenzhin, E. A.*; Maksimkin, O. P.*; Doronina, T. A.*; Silnyagina, N. S.*; Turubarova, L. G.*; Tsai, K. V.*; Zheltov, D. A.*; Kashirskiy, V. V.*; Chikhray, E. V.*; Shestakov, V. P.*; Kuykabaeva, A. A.*; Kawamura, Hiroshi; Tsuchiya, Kunihiko 

The paper contains and analyzes the results of integrated material studies of lithium ceramic Li$$_{2}$$TiO$$_{3}$$ + 5% mole TiO$$_{2}$$ irradiated in reactor WWR-K during 5,350 hours under controlled conditions taking into account effects of tritium generated in the course of irradiation. The changes in density, microstructure, phase and chemical composition, strength and microhardness were studies; lithium burn-up level and tritium residual content were defined. The significant influence of radiation-thermal impacts on structure and properties of ceramic samples were observed. It was shown that irradiation resulted in lithium ceramics softening, at that this effect depended on irradiation temperature. It was discovered the radiation change of phase composition of lithium ceramic.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.