Refine your search:     
Report No.
 - 

Conceptual design and related R&D on ITER mechanical based primary pumping system

Tanzawa, Sadamitsu; Hiroki, Seiji; Abe, Tetsuya; Shimizu, Katsusuke*; Inoue, Masahiko*; Watanabe, Mitsunori*; Iguchi, Masashi*; Sugimoto, Tomoko*; Inohara, Takashi*; Nakamura, Junichi*

The primary vacuum pumping system of the International Thermonuclear Experimental Reactor (ITER) exhausts a helium (He) ash resulting from the DT-burn with excess DT fueling gas, as well as performing a variety of functions such as pump-down, leak testing and wall conditioning. A mechanical based vacuum pumping system has some merits of a continuous pumping, a much lower tritium inventory, a lower operational cost and easy maintenance, comparing with a cryopump system, although demerits of an indispensable magnetic shield and insufficient performance for hydrogen (H$$_{2}$$) pumping are well recognized. To overcome the demerits, we newly fabricated and tested a helical grooved pump (HGP) unit suitable for H$$_{2}$$ pumping at the ITER divertor pressure of 0.1-10 Pa. Through this R&D, we successfully established many design and manufacturing databases of large HGP units for the lightweight gas pumping. Based on the databases, we conceptually designed the ITER vacuum pumping system mainly comprising the HGP with an optimal pump unit layout and a magnetic shield. We also designed conceptually the reduced cost (RC)-ITER pumping system, where a compound molecular pump combining turbine bladed rotors and helical grooved ones was mainly used. The ITER mechanical based primary pumping system proposed has eventually been a back-up solution, whereas a cryopump based one was formally selected to the ITER for construction.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.