検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

イオン飛跡技術を利用した燃料電池用高分子電解質膜の開発

Development of fuel-cell polymer electrolyte membranes by ion track technology

八巻 徹也; 浅野 雅春; 小林 美咲*; 野村 久美子*; 高木 繁治*; 前川 康成; 吉田 勝

Yamaki, Tetsuya; Asano, Masaharu; Kobayashi, Misaki*; Nomura, Kumiko*; Takagi, Shigeharu*; Maekawa, Yasunari; Yoshida, Masaru

本研究では、直径数十から数百ナノメートルの潜在飛跡内に生成した活性点(ラジカルや過酸化物)からのグラフト重合により、燃料電池用電解質膜を作製した。日本原子力研究開発機構TIARAのサイクロトロンにおいて、25マイクロメートル厚のエチレン-テトラフルオロエチレン膜にイオン照射した後、スチレンのグラフト重合とクロロスルホン酸を用いたスルホン化によって電解質膜を得た。透過型電子顕微鏡,電界放出型走査型電子顕微鏡による観察の結果、得られた電解質膜におけるプロトン伝導経路の形態は膜厚方向に延びる断面を楕円とした柱状であり、その太さは照射イオン種によってナノレベルで制御可能であることが確認できた。また、プロトン伝導率,最大引張強度,乾湿寸法変化などの特性は、ナフィオンや$$gamma$$線グラフト電解質膜と比較して優れていることが明らかになった。

We have been using high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA to develop proton-conductive membranes for PEFCs. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. Interestingly, the resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. According to microscopic observations, this is probably because the columnar electrolyte phase extended, with a width of tens-to-hundreds nanometers, through the membrane. Other excellent membrane properties, e.g., sufficient mechanical strength, high dimensional stability, and low gas permeability should be due to such a controlled structure.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.