Refine your search:     
Report No.
 - 

Irradiation effect on microstructure of modified SUS316 stainless steel cladding irradiated at elevated temperature to high dose

Yamashita, Shinichiro   ; Akasaka, Naoaki; Nishinoiri, Kenji; Takahashi, Heishichiro

A modified SUS316 stainless steel (PNC316) for high burn-up fast reactor core application has been successfully developed. The material has a typical composition of 16Cr-14Ni-2.5Mo-0.25P-0.004B-0.1Ti-0.1Nb and is used in the 20% cold-worked condition. To demonstrate irradiation performance of PNC316 cladding irradiation experiments has been successively carried out at the temperature ranging from 775 K to 905 K up to a maximum dose of 125 dpa. In this study, the microstructures of the irradiated specimens were carefully examined. Low-magnification image including some of needle-like precipitates indicates many helium bubbles attaching at the precipitate interface. On the other hand, a representative high-resolution image of the needle-like precipitate with the sizes of a few tens of nanometers long and a few nanometers wide shows a distinct interface structure between FCC matrix and the precipitate. As the results of diffraction pattern and image analyses this characteristic precipitate was identified as Fe$$_{2}$$P phase. Based on the numerous results of TEM examination, it is found that a significant improvement in the swelling resistance of PNC316 was mainly derived from the formation of a stable phosphide that traps helium bubbles and retards the conversion of bubbles to voids.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.