Refine your search:     
Report No.
 - 

Kinetic modelling of impurity transport in detached plasma for integrated divertor simulation with SONIC (SOLDOR/NEUT2D/IMPMC/EDDY)

Shimizu, Katsuhiro; Takizuka, Tomonori; Oya, Kaoru*; Inai, Kensuke*; Nakano, Tomohide; Takayama, Arimichi*; Kawashima, Hisato; Hoshino, Kazuo

The self-consistent coupling of an MC impurity code IMPMC to a divertor code SOLDOR/NEUT2D is succeeded by overcoming the intrinsic problems of Monte Carlo (MC) modelling for impurity transport. MC modelling for impurity transport is required in order to take into account the kinetic effect and the complex dissociation processes of hydrocarbons. The integrated divertor code SONIC enables us to investigate the details of impurity transport including erosion/redeposition processes on the divertor plates by further coupling of an MC code EDDY. The dynamic evolution of X-point MARFE observed in JT-60U is investigated. The simulation results indicate that the hydrocarbons sputtered from the dome contribute directly to the enhanced radiation near the X-point. Without the recycling, the kinetic effect of the thermal force improves the helium compression, compared with the conventional (fluid) evaluation. This effect is, however, masked by the recycling at the divertor targets.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.