Refine your search:     
Report No.

Evaluation of creep damage and diametral strain of fast reactor MOX fuel pins irradiated to high burnups

Uwaba, Tomoyuki ; Sogame, Motomu; Ito, Masahiro*; Mizuno, Tomoyasu; Donomae, Takako  ; Katsuyama, Kozo 

In determining lifetime criteria of fast reactor fuel pins, creep damage due to fission gas pressure on mixed-oxide fuel pins with austenitic stainless steel cladding successfully irradiated to high burnups (120 GWd/t or higher pin averaged burnup) was evaluated. The degree of creep damage of these fuel pins was expressed as cumulative damage fractions (CDFs), defined so that cladding breaching occurs when the CDF exceeds 1.0. The obtained CDFs for typical high temperature fuel pins were on the order of 10$$^{-4}$$-10$$^{-2}$$ at the end of irradiation, indicating that these fuel pins had large safety margins against breaching due to creep damage. In order to investigate the factors that govern the lifetime of fuel pins, pin diametral increase as well as CDF were predicted in cases of extended burnups from 120 GWd/t onward, and then were compared with tentatively determined limit values. The predicted pin diametral increase reached its limit value earlier than the CDF because of a significant increase in the cladding void swelling, suggesting that lifetimes of fuel pins with austenitic stainless steel cladding are practically governed by the diametral increase rather than by the creep damage.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.