Refine your search:     
Report No.

Design study of nuclear power systems for deep space explorers, 1; Criticality of low enriched uranium fueled core

Kugo, Teruhiko; Akie, Hiroshi; Yamaji, Akifumi; Nabeshima, Kunihiko; Iwamura, Takamichi; Akimoto, Hajime

Combining a nuclear reactor with thermoelectric converters is expected to be one of promising options to supply a propulsion power for deep space explorers. One of the key features of the concept is to use low enriched uranium fuels from the viewpoint of nuclear non-proliferation. Fuels of uranium oxide, nitride and metal were examined. Zirconium and yttrium hydrides, beryllium, zirconium beryllide and graphite were considered as moderators. Reflectors of beryllium, beryllium oxide, zirconium beryllide and graphite were taken into consideration. A criticality survey of the core was performed by changing the ratio of the fuel, moderator and structure, and the reflector thickness. As a result from the viewpoint of a smaller mass of reactor, it is better to use thermal spectrum cores than fast ones, and the metal hydride moderators than beryllium or graphite. For example, a combination of uranium nitride, yttrium hydride and beryllium reflector achieves a reactor mass of as low as 500kg.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.