Refine your search:     
Report No.

A Gene encoding ${it SMALL ACIDIC PROTEIN 2}$ potentially mediates the response to synthetic auxin, 2,4-dichlorophenoxyacetic acid, in ${it Arabidopsis thaliana}$

Nakasone, Akari; Yamada, Maki*; Kiyosue, Tomohiro*; Narumi, Issei; Uchimiya, Hirofumi*; Ono, Yutaka

The ${it SMALL ACIDIC PROTEIN 2}$ (${it SMAP2}$) gene is a paralogue of the ${it SMAP1}$ gene that mediates the response to the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in the root of Arabidopsis thaliana. Their encoded proteins, SMAP1 and SMAP2, are similar in calculated molecular weight and isoelectric point, and in having a highly conserved phenylalanine and aspartic acid-rich domain. RNA expression analysis showed that ${it SMAP1}$ mRNA is present throughout the plant body while ${it SMAP2}$ mRNA is restricted to siliques and anthers. Over-expression of the ${it SMAP2}$ gene, as well as ${it SMAP1}$, by 35S cauliflower mosaic virus promoter restored sensitivity to 2,4-D in the 2,4-D-resistant mutant, ${it aar1}$, which is defective in ${it SMAP1}$ function. The results suggest that SMAP2 has an ability to mediate the 2,4-D response and is expressed only in restricted tissues.



- Accesses




Category:Plant Sciences



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.