Refine your search:     
Report No.
 - 

Nondestructive evaluation of neutron irradiation damage on austenitic stainless steels by measurement of magnetic flux density

Takaya, Shigeru  ; Nagae, Yuji ; Aoto, Kazumi ; Yamagata, Ichiro ; Ichikawa, Shoichi; Konno, Shotaro; Ogawa, Ryuichiro; Wakai, Eiichi  

Magnetic flux densities for neutron irradiated specimens of austenitic stainless steels were measured by using a flux gate (FG) sensor to investigate the nondestructive evaluation method of irradiation damage parameters, dose and He content. The range of dose, He content and irradiation temperature of the neutron irradiated samples studied in this paper were 0.01-30 displacement per atom (dpa), 1.0-17 appm and 470-560 $$^{circ}$$C, respectively. Magnetic flux density increased with dose although there may be a threshold dose for magnetic property to change between 2 and 5 dpa for 316FR. This result shows the possibility of nondestructive evaluation of dose by measuring magnetic flux density by an FG sensor. On the other hand, magnetic flux density did not depend on He content.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.