Refine your search�ソスF     
Report No.

Nanometer-sized domain structures in LuFe$$M$$O$$_{4}$$ ($$M$$=Cu, Co) revealed by energy-filtered transmission electron microscopy

Matsuo, Yoji*; Hirata, Akihiko*; Horibe, Yoichi*; Yoshii, Kenji  ; Ikeda, Naoshi*; Mori, Shigeo*

Diluted effect on the charge ordered (CO) structure in dielectric materials LuFe$$M$$O$$_{4}$$ ($$M$$=Cu, Co) were investigated by an energy-filtered transmission electron microscope (TEM), in combination with a conventional TEM. It is revealed that partial substitution of Cu$$^{2+}$$ and Co$$^{2+}$$ for Fe$$^{2+}$$ in LuFe$$_{2}$$O$$_{4}$$ destabilized the CO structure. In LuFeCuO$$_{4}$$, there exist characteristic zigzag-shaped diffuse streaks and diffuse spots at the h/3-$$delta$$ h/3-$$delta$$ 0-type positions (h: integer, $$delta$$=0.06) in reciprocal space, which originate from static cationic ordering of Fe$$^{3+}$$ and Cu$$^{2+}$$ ions in the triangular lattice. Moreover, real-space images by the energy-filtered TEM revealed that nanometer-sized domain structures with the 5$$sim$$10 nm size are formed. In contrast, honeycomb-shaped diffuse streaks were found in LuFeCoO$$_{4}$$, in which no domain structures are observed in real-space images.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.