Refine your search:     
Report No.
 - 

Development of advanced tritium breeding material with added lithium for ITER-TBM

Hoshino, Tsuyoshi; Kato, Kenichi*; Natori, Yuri*; Oikawa, Fumiaki; Nakano, Natsuko*; Nakamura, Mutsumi*; Sasaki, Kazuya*; Suzuki, Akihiro*; Terai, Takayuki*; Tatenuma, Katsuyoshi*

Lithium titanate (Li$$_{2}$$TiO$$_{3}$$) is one of the most promising candidates among tritium breeding materials because of its good tritium release. Addition of H$$_{2}$$ to inert sweep gas has been proposed for enhancing the tritium release from tritium breeding materials. However, the mass of Li$$_{2}$$TiO$$_{3}$$ was decreased with time in the hydrogen atmosphere. It is assumed that the mass decrease indicates the loss of the oxygen contained in the sample caused by the change from Ti $$^{4+}$$ to Ti $$^{3+}$$, and that the partial pressures of Li-containing species were increased in the hydrogen atmosphere. In order to decrease the mass-change at high temperature, advanced tritium breeding material with added Li should be developed to improve the physical and chemical stability in hydrogen atmosphere. In the case of the Li$$_{2+x}$$TiO$$_{3+y}$$ samples used by the present study, LiOHH$$_{2}$$O and H$$_{2}$$TiO$$_{3}$$ were proportionally mixed with the molar ratio Li/Ti of either 2.0 and 2.2. These samples are designated as L20 (Li/Ti = 2.0) and L22 (Li/Ti = 2.2), respectively. The results of XRD measurement showed that the phases in advanced tritium breeding material were as follows. L22 existed as non-stoichiometric compound Li$$_{2+x}$$TiO$$_{3+y}$$.

Accesses

:

- Accesses

InCites™

:

Percentile:96.13

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.