Refine your search�ソスF     
Report No.
 - 

Studies on grouting performance in Mizunami Underground Research Laboratory (Contract research)

Kawamura, Hideki*; Ando, Kenichi*; Noda, Masaru*; Tanaka, Tatsuya*; Matsuda, Takeshi*; Fujii, Haruhiko*; Hashimoto, Shuji*; Ueda, Tadashi*; Matsui, Hiroya ; Takeuchi, Shinji; Iyatomi, Yosuke 

Grouting has practical importance for the reduction of groundwater inflow into excavations during construction of underground facilities. Considering the performance assessment of a radioactive waste repository, the performance of the engineered barrier system could be adversely affected by a high pH plume generated from grout. Therefore, a quantitative estimation of the effectiveness of grouting and grout material is essential. This study has been performed in the Mizunami URL being excavated in crystalline rock as a part of the Project for Grouting Technology Development for the Radioactive Waste Repository funded by METI, Japan. The aims were to evaluate the applicability of existing grouting technology and to develop methodology to determine the distribution of grout and change in hydraulic properties of the grouted rock volume. The target rock is the volume of rock around a planned refuge niche where the pre-excavation grouting was performed at 200-m depth from ground surface. After excavation of the refuge niche, ten boreholes were drilled and different kinds of investigations were carried out during and after drilling. The results were integrated and groundwater flow analysis of pre and post excavation grouting conditions were carried out to estimate quantitatively the effect of pre-excavation grouting. The results suggest that current pre-excavation grouting technology is effective for reduction of groundwater inflow into excavations and that hydraulic conductivity of the surrounding rock can be reduced by more than one order of magnitude.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.