Refine your search:     
Report No.
 - 

Algebraic instability caused by acoustic modes in supersonic shear flows

Hirota, Makoto; Yoshida, Zensho*

Perturbations in a shear flow exhibit rather complex behavior - waves may grow algebraically even when the spectrum of disturbances is entirely neutral (no exponential instability). A shear flow brings about non-selfadjoint property, invalidating the standard notion of dispersion relations, and it also produces a continuous spectrum that is a characteristic entity in an infinite-dimension phase space. This paper solves an initial value problem using the Laplace transform and presents a new-type of algebraic instability that is caused by resonant interaction between acoustic modes (point spectrum) and vortical continuum mode (continuous spectrum). Such a resonance is possible when variation of velocity shear is comparable to sound speed.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.