Particle transport of LHD
Tanaka, Kenji*; Kawahata, Kazuo*; Tokuzawa, Tokihiko*; Akiyama, Tsuyoshi*; Yokoyama, Masayuki*; Shoji, Mamoru*; Michael, C. A.*; Vyacheslavov, L. N.*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; Mishchenko, A.*; Muraoka, Katsunori*; Okajima, Shigeki*; Takenaga, Hidenobu; LHD Experimental Group*
Particle confinement processes were studied in detail on LHD. Diffusion coefficients (D) and convection velocities (V) were estimated from density modulation experiments. The magnetic configuration and collisionality were widely scanned in order to investigate parameter dependences of D and V. In order to study the effect of the magnetic configuration, magnetic axis positions (R) were scanned from 3.5 m to 3.9 m. This scan changed the magnetic ripples quite significantly, enabling the effects of neoclassical properties on measured values to be widely elucidated. Dependences of electron temperature (T) and helically trapped normalized collsionality (), where =1 indicates a rough boundary between the 1/ and plateau regimes, were examined using the heating power scan of neutral beam injection (NBI). It was found out that generally larger (or smaller) contributions of neoclassical transport resulted in more hollow (or peaked) density profiles. The larger neoclassical contribution was found to be situated at a more outwardly shifted R for the same T, and higher T or lower at each R. However, it is to be noted that R=3.5 m showed different characteristics from these trends in that this case showed a more peaked density profile at higher T.